All-fiber-integrated linearly polarized fiber laser delivering 476  μJ, 50  kHz, nanosecond pulses for ultrasonic generation open site


Date: May 10, 2016
All-fiber-integrated linearly polarized fiber laser delivering 476  μJ, 50  kHz, nanosecond pulses for ultrasonic generation

We demonstrate a high-energy linearly polarized pulsed fiber laser for ultrasonic generation based on a master oscillator power amplification (MOPA) scheme, which delivers nanosecond pulses with duration of 4.8 ns and pulse energy of 476 μJ at the repetition rate of 50 kHz. The MOPA is seeded by a gain switch semiconductor laser diode at 1064 nm. In the pre-amplification stages, a double-pass amplification structure is designed and successfully applied to amplify the low-power seed laser for the consideration of suppressing amplified spontaneous emission, decreasing the number of amplification stages, and reducing the nonlinear effects. A highly ytterbium-doped fiber is utilized in the main amplifier to shorten the fiber length and reduce the fiber nonlinearity. The average power is finally boosted to 23.8 W with corresponding optical-to-optical efficiency of 66.9% and a polarization extinction rate of ∼10.5  dB. The corresponding peak power is calculated to be 87.1 kW. Finally, the established laser system is successfully used for ultrasonic generation based on a line excitation configuration and grating excitation configuration, and clear surface acoustic wave signals are detected. Many potential applications in laser ultrasonics can be foreseen.