Interband cascade laser-based ppbv-level mid-infrared methane detection using two digital lock-in amplifier schemes open site


Date: Feb 23, 2018
Interband cascade laser-based ppbv-level mid-infrared methane detection using two digital lock-in amplifier schemes

A parts-per-billion in volume (ppbv) level mid-infrared methane (CH4) sensor system was demonstrated using second-harmonic wavelength modulation spectroscopy (2f-WMS). A 3291 nm interband cascade laser (ICL) and a multi-pass gas cell (MPGC) with a 16 m optical path length were adopted in the reported sensor system. Two digital lock-in amplifier (DLIA) schemes, a digital signal processor (DSP)-based DLIA and a LabVIEW-based DLIA, were used for harmonic signal extraction. A limit of detection (LoD) of ~ 13.07 ppbv with an averaging time of 2 s was achieved using the DSP-based DLIA and a LoD of ~ 5.84 ppbv was obtained using the LabVIEW-based DLIA with the same averaging time. A rise time of 0→2 parts-per-million in volume (ppmv) and fall time of 2→0 ppmv were observed. Outdoor atmospheric CH4 concentration measurements were carried out to evaluate the sensor performance using the two DLIA schemes.